120 MINUTES

1.	Actin filament is composed of:											
	A)	Troponin	B)	Tropomyosin								
	C)	Actin	D)	All of the above								
2.	Diffe	erent serine proteases differ in:										
	A)	Mechanism of action	B)	Catalytic triad in the active site								
	C)	Substrate specificity	D)	None of these								
3.	Purit	y of the isolated protein can be		•								
	A)	Electrophoresis and UV-Vis	-	± 7								
	B)	Electrophoresis and immuno										
	C)		ydropho	bic interaction chromatography								
	D)	Both A and C										
4.		Fructose is the energy source for sperms and is produced by the action of: A) Chapter dehydrogeness and isomerses										
	A)	Glucose dehydrogenase and										
	B)	Sucrose dehydrogenase and										
	C) D)	Aldose reductase and sorbiton None of these	or denyc	irogenase								
	D)	None of these										
5.		ion needed for the storage and a		1								
	A)	$\operatorname{Mg} 2^+$ B) $\operatorname{Mn} 2^-$	'	C) $\operatorname{Zn} 2^+$ D) $\operatorname{Zr} 2^+$								
6.	Osazone test can be used for distinguishing:											
	A)	Sucrose and starch	B)	Starch and glycogen								
	C)	Fructose and lactose	D)	Glucose and fructose								
7.	When the rotor of ATP synthase rotates 360°:											
	A) 3 H ⁺ ions are shuttled back to mitochondrial matrix											
		B) 1 H ⁺ ion is shuttled back to mitochondrial matrix										
		C) 3H ⁺ ions are shuttled to the intermembrane space of mitochondria										
	D)	D) 3 ATP molecules are produced										
8.		aracteristic of Animalia:										
	A)	Absence of cell wall	B)	Presence of chloroplast								
	C)	Athecated nucleus	D)	Presence of mesosomes								
9.		most common cell wall compon		<u> </u>								
	A)											
	C)	Hemicellulose	D)	Chitin								
10.		rus with single stranded DNA g										
	A)	Lambda phage	B)	TMV								
	C)	fl phage	D)	CaMV								

11.	Myotonia congenita is caused by:								
	A)	Mutations affecting Choride	chann	el					
	B)	Mutations affecting Na K pu	ımp						
	C)	Mutations affecting passive	transpo	ort					
	D)	None of these							
12.		ments in Drosophila:							
		nent 1. Cause P M hybrid dy							
	Stater	ment 2. Used as vectors for I	Orosop!	hila					
	A)	1 and 2 are correct, and 1 is	the cor	rrect explanation of 2					
	B)	1 and 2 are correct and 1 is a	not the	correct explanation of 2					
	C)	1 is wrong and 2 is correct							
	D)	Both 1 and 2 are wrong							
13.		eamination of 5 methyl cytosi							
	A)	A- G transition	B)	G- A transition					
	C)	Replication block	D)	None of these					
14.	RB1 r	nutation causes cancer by:							
	A)	Loss of function	B)	Gain of function					
	C)	Forming fusion oncogenes	D)	None of the above					
15.	Unco	mpetitive inhibitor:							
	A)	Decreases Km							
	B)	Decreases Vmax							
	C)	Decreases both Km and Vm	ax.						
	D)	No change in Km and Vmax	ζ						
16.	Rate 2	zonal centrifugation separates	particle	es that differ in:					
	A)	Size but not density	B)	Density but not in size					
	C)	Both size and density	D)	Neither size nor density					
17.	The c	ommonly used reference elect	rode in	pH meter is electrode.					
	A)	Sodium chloride	B)	Potassium chloride					
	C)	Silver chloride	D)	HC1					
18.	Relati	ionship between absorbance (A	A) and	transmittance (T) is:					
	A)	A=1/T	B)	A=1-T					
	C)	A = log 10 (1/T)	D)	$A = - \log 10 (1/T)$					
19.	In HP	LC, peak area refers to the:							
	A)	Concentration of the compo	und						
	B)	Absorption maxima of the c	ompou	nd					
	C)	Retention time of the compo	ound						
	D)	None of these							
20.	Whiel	h of the following compound i	release	more energy upon hydrolysis?					
	A)	ATP	B)	GTP					
	C)	Creatine phosphate	D)	Glucose 6 phosphate					

21.	Linew A) B) C) D)	Analy Analy Kineti	Analysis of bi-substrate reactions Analysis of enzyme inhibition Kinetic analysis All of the above								
22.	Staten	nent 1.	chromosome o Philadelphia Philadelphia	chromo	some ha	s ABL/	BCR f	fusion		ty in cells	
	A) B) C) D)	Both 1 Both 1	and 2 are contained and 2 are contained 2 are writing and 2 is	rrect and ong			_				
23.	Staten	nent 1.	Bread whea Bread whea	t is a fert	tile hexa	-					
	A) C)		orrect and 2 is and 2 are con	_	B) D)		rong an and 2				
24.	The pe	erfect po	opulation size B)	of a trih	ybrid cr	oss is: C)	32		D)	64	
25.	Which A) C)	_	g the following duction gation	g is not a	natural B) D)	Transf			nism in 1	bacteria?	
26.	The dr A) B) C) D)	Red an Ebony Spinel	a genes which and white eye a and gray bod ess and normal	alleles ly alleles al bristle	alleles	s inheri	tance:				
27.	a A) C)		e HW equilib population dy	rium.	B) D)		fertilisa al selec				
28.	of 0.49	9. Find e only g	Veinberg populout the freque enotypes in the	ncy of he	eterozyg	gotes in	the pop	oulation	n if AA,		
29.	A) Disinf A) C)	within	B) nactivate or d body rt surfaces	0.7 estroy m	icroorga B) D)	on boo	0.3 ly l in foo	D) d	0.42		

30.	Passive agglutination employs carrier particles that are coated with: A) soluble antigens B) particulate antigens C) antibodies D) epitopes								
31.	A)	cluster of: Differentiation Both A and B		B) D)	Design Neithe	nation er A nor B			
32.		ns: Enhance phago Not affect phag	•	B) D)		ase phagocytos hagocytosis	sis		
33.	A)	terol is not pres Most bacteria Cell membrane		B) D)		nza virus lasmic reticula	ır memb	orane	
34.	A)	ng with Benedic Glucuronic acid Glucaric acid		glucose i B) D)	Gluco	rted to: nic acid us oxide			
35.	A)	mple for revers Glucokinase Phosphoglycer		eaction is B) D)	Hexok	-	d by:		
36.	At high glucose levels, fatty acid catabolism is inhibited by the inhibition of: A) carnitine acyl transferase by malony CoA B) fatty acyl CoA dehydrogenase by acetyl CoA C) acetyl CoA carboxylase D) thiolase								
37.	A)	lycosylases are Nucleotide exc Base excision		B) D)	Misma	atch abination			
38.	A)	as 5' to 3 ' exor Klenow enzym DNA pol II		vity: B) D)	DNA 1	•			
39.	Find out the odd one: A) GTPase activating proteins B) Ras pathway C) Guanine nucleotide releasing proteins D) MAP kinases								
40.		any different R one	NA polymara B) two	ases are	found in C)	n E coli? three	D)	fifteen	
41.	Find ou A)	at the odd one: Scrapie	В) СЛІ)	C)	Ataxia	D)	Kuru	

42.	Find the incorrect match:											
	A)	Shine Delgarno and Ko		B)		and Kozak	D 1					
	C)	Promoter and TATA bo	ΟX	D)	Promo	oter and Shine	e Delgarn	0				
43.	Whic A) B) C) D)	It is from phage SPO-I It can be induced by IP' It can be repressed by la	TG ac rep									
44.	Find (A) (C)	out the odd one: Topocloning technolog LR clonase	У	B) D)	BP clonase Gateway technology							
45.	What A)	is the biosafety level practice BSL-1 B) F	ctices BSL-2		mended C)	for SARS co BSL-3	ovid -19? D)	BSL-4				
46.	Reco A)	mbinant hepatitis B vaccii HBeAg B) I	ne is a		ration o C)	f: HBcAg	D)	HBsAg				
47.	HAT A) B) C) D)	medium is composed of: hypoxanthine-aminopro hypoxanthine-aminopto hypoxanthine-aminopto hypoxanthine-aminopto	erid-tl erin-tl	nymidin nymene	ne							
48.	HGPA) B) C) D)	RT is necessay for: The salvage synthesis of The denovo synthesis of Both A and B Neither A nor B										
49.	ELIS A) B) C) D)	A is: enzyme-linked infection enzyme-ligated immune enzyme-linked immune enzyme-linked immune	osorb osorbe	ent assa ent assa	y							
50.	The HA) B) C) D)	BCG vaccine contains Dead bacteria Live bacteria that have Live bacteria in its orig Bacterial products	been		ned							
51.	TATA A) B) C) D)	A is: Tumor-Associated Tran Tumor-Associated Tran Tumor-Assisted Transp Tumor-Activated Trans	nsplar olanta	ntation An	Antigen tigen	-						

52.	Which A)	IgG	B)	IgM	ss signi	C)	IgA	ne numan p D)	IgD
53.		t human It is plus Each in Cloning	g the following n cloning? laying God individual has ng destroys in non morality i	the right dividualit	to deve	elop wit	hout inter	ference	argument
54.	Find o A) C)	Taq p	odd one among olymerase lymerase	g the follo	_	Deep	table poly Vent poly olymerase	merase	
55.	Which A) B) C) D)	It wor Recor It con	thent among the ks by alpha combinants can be tains β lactam ased on pSC1	omplemer be identifi ase gene	ntation ed by b				
56.	Select A) B) C) D)	AFLP RFLP SNP a	rect statement is a codomina is a PCR base are codominan o uses 20mer p	ant marke ed marker it markers	•				
57.		_	g the following synthesis:	g nest gen	eration	sequer	ncing proto	ocol is not l	oased on
	A) C)		equencing		B) D)	ABi- S Helico			
58.		odificat They a They o They o Methy	g the following tion? are formed by do not have predo not require vlase treatment tion fragment	partially reformed restriction t is not re	comple sticky e n diges	ementar ends tion	y oligos	-	
59.	Statem Statem		Metaplasia i In transdiffe				-		ell to another another
	A) C)		land 2 are corrong and 2 is		B) D)		orrect and and 2 are	2 is wrong wrong	
60.	SARSA)	double	estranded RN-stranded DN	IA	rus. B) D)	_	-stranded e-stranded		

61.	Chemo-lithotrophs gain energy from: A) reduced organic compounds B) all compounds C) reduced inorganic compounds D) photosynthesis										
62.		illin kills suscep			•			. i.a ~			
	A) C)	specifically as		_	B) D)						
62		1 3		Č		-T	J F	<u> </u>			
63.	Lysoz A)	zyme acts by hy between NAC			bond: B)	hetwa	een cell wall	and cyton	lasm		
	C)	eptidoglycan					doglycan and				
64.	Daily	y production of which ofis greater than that of any other immunoglobulin class.									
· · ·	A)	Serum IgA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		B)		tory IgA		g		
	C)	Serum IgM			D)	Secre	etory IgM				
65.	Parato	ppe is a part of:									
	A)	Antibody	B)	Antig	en	C)	MHC	D)	Complement		
66.	Alteplase is a recombinant form of activator.										
	A)	tissue IL-2			B)	tissue					
	C)	tissue plasmir	nogen		D)	tissue	complemen	nt			
67.		echnique which		used sp				ious PCR	amplicons:		
	A)	Hotstart PCR			B)		ed PCR				
	C)	Inverse PCR			D)	Touc	h down PCR				
68.	The p	rotocol which is									
	A)	Hybrid arrest					ınlogical scr	_			
	C)	South Wester	n scree	nıng	D)	North	n Western Sc	creening			
69.							with differing clonal variat				
	A)	Both 1 and 2					_				
	B)	Both 1 and 2			12 is the	e correc	t explanation	n of 1			
	C) D)	Both 1 and 2 2 is wrong ar		_							
70.	Chlore	oplast transforn	nation i	ic advan	itageou	s hecon	se.				
70.	A)	Biological co			_						
	B)	Dosage effect			_						
	C)	Position effec	ts can l								
	D)	All of the abo	ve								

71.	A) B) C) D)	is an autoson Huntington Angelmann Duchene M Cystic fibro	is diseaae i's Diseas Iuscular l	e se					
72.		ch among the nted without a			-	operties	s come into	existence a	s soon as
	A) C)	Copyright Trade mark	-	•	B) D)	GI Dom	ain name		
73.	The §	geometric mea 2	an of 2 ar B)	nd 8 is:		C)	6	D)	4
74.	The (A)	distance betwee	een the C B)	artesian 7	points	(2, 3) a C)	nd (5, 7) is:	D)	2
75.	Meso A) C)	osomes differ Structure Location	from incl	lusion bo	dies in B) D)	Func	tion ne above		
76.	Bacto A) C)	erial spores are rich in Calcium dipicolinate B) dipalmate dicarbonate D) disulphate							
77.	Acco A) C)		ars from t	the grant	B)	Twei	is for onty years fro	om the appl	ication
78.	Which A) B) C) D)	ch among the Genetically India follow Plants are p India is not	modifie ws sui ge patentable	d organis neris syst e in India	sms are tem of	e patent plant v	able in India	a ction	
79.	The tA)	form used for Form 18	filing con B)	mplete / Form		ional sp C)	ecification of Form 3	of patent in D)	India: Form 5
80.	Select A) B) C) D)	-	can be uprotecte is one of	used infird as soor the intell	n as it i ectual	is drawı	n on a paper ies with sho		of protection
81.	Buda A) B) C) D)	Protection Copyright Deposit of Protection	of plant v protection microorg	varieties n ganisms	dified	organis	ms		

82.	Which among the following change has happened to Indian patent law after TRIPS?											
	A)	Change from	n proces	ss to prod	uct pat	tent						
	B)	Change from	n Produ	ct to proc	ess pa	tent						
	C)	Compulsory	licenci	ng of drug	gs is m	andato	ry					
	D)	Term of pat	ent is 14	years								
83.	The t	term petty pate	ent is use	ed for	- pater	nnt.						
	A)	process	B)	produc	et	C)	design	D)	utility			
84.	The	major carrier of	of Salmo	nellosis:								
	A)	Meet & amp	; Egg		B)	Egg d	& Fish					
	C)	Fruit &	; Egg		Fish	& Egg						
85.		organism respo										
	A)	Bacillus licl		nis	B)		tia marcescens					
	C)	Bacillus sub	otilis		D)	Rhizo	opus stolonifer	a				
86.		out the roots o	_									
	A)	-2, -3	B)	2, -3		C)	2, 3	D)	-2, 3			
87.							ession 2, 4, 6, -					
	A)	1000	B)	10000		C)	10100	D)	11000			
88.		bic method us		aste wate								
	A)	Trickling file	lter		B)	-	c Tank					
	C)	C) USAB D) USSB										
89.	Industrial alcohol will be produced by using starter culture:											
	A)	Top yeast			B)		lle yeast					
	C)	Feeder yeas	t		D)	Botto	om yeast					
90.		enzyme used fo										
	A)	Protease	B)	Amyla	se	C)	Pectinase	D)	Cellulase			
91.		delayed ripenii	_			-	_					
	A)	Altered	B)	Replac	ed	C)	Relocated	D)	Silenced			
92.		organism is co	ming un	der GRA								
	A)	E.coli			B)		domonas					
	C)	Lactobacille	ıs		D)	Bacil	llus					
93.		et the correct st										
	A)	Genes with				-	atentable					
	B)	Artificial ce		-								
	C) Genetically altered sequences are not patentable											
	D)	All of the al	oove sta	tements a	re corr	rect						
94.		gn office of Inc				~`	··					
	A)	Chennai	B)	Mumb	a1	C)	Delhi	D)	Kolkatha			

95.	-	oublication of t	-				·	-			
	A)	12	B)	18	C)	24	D)	6			
96.	Find	out the odd on	e:								
	A)	RaxML	B)	Mr Bayes	s C)	Paup*	D)	S- DIVA			
97.	Find (A) B) C) D)	BankIt is a s	lucleic a stand alc stand alc sequence	one platform one platform	for seque	ence submiss ence submiss ank, a PDB a	ion	created			
98.	The Tree building algorithm based on distance matrix:										
	A) UPGMA B) ML										
	C)	Maximum p	arsimor	ny D) Bay	resian					
99.	How	many reading	frames	are found in	a double	stranded DN	A?				
	A)	3	B)	1	C)	2	D)	6			
100.	 A box contains a large number of red and blue marbles. The proportion of blue marbles is 50%. A simple random sample of 100 marbles is drawn from the box. T which among the following statements are false? A) The percentage of red marbles in the sample has an expected value of 50% with an SE of 5% B) The 5% measures the likely size of the chance error in the 50% C) The percentage of reds in the sample will be around 50% give or take 5% o D) There is about 95% chance that the percentage of reds in the sample will be the range from 40% to 60% 							the box. Then ue of 50% take 5% or so			
101.	Chine A)	ese red rice is: Miso	B)	Natto	C)	Ang-kak	D)	Tempeh			
102.	The b	oyproduct of da	airv indi	ustrv used as	s a carbon	source in fe	mentation	media:			
	A)	Whey	B)	Molasses		Dextrin	D)	Corn steep			
103.	An ex	cample of sedin	mentary	type of nut	rient cycle	e is					
	A)	Nitrogen cyc		B)		bon cycle					
	C)	Phosphorous	s cycle	D) Nor	ne of the above	/e				
104.	An al	gae which pro	duce hy	drogen gas							
	A)	Chlorella		\mathbf{B}	-	rogyra					
	C)	Chlamydom	onas	D) Spir	rulina					
105.	Radiant energy is converted to potential energy by:										
	A)	Consumers			,	ducers					
	C)	Decomposer	rs.	D) All	of these					

106.		lesel obtained f	rom:		D)	G 41	.1				
	A)	Calotropis			B)		eranthus rosea	IS			
	C)	Jatropa curc	us		D)	Acac	la				
107.	Gas h	naving highest	greenho	use effe	ct:						
	A)	CO_2	B)	CH_4		C)	CO	D)	N_2O		
								_			
108.		h one among the	he follo	wing is a				e?			
	A)	DDT Mathia aarb			B)	Parati Aldri					
	C)	Methiocarb			D)	Aluli	П				
109.	Whic	h following co	mbinati	on is aci	d rain?						
	A)	H ₂ SO ₄ & am			B)	HCl &	& amp; HNO ₃	3			
	C)	H ₂ SO ₄ & am	ip; HNC) ₃	D)	HCl &	& amp; H ₂ SO	4			
110.	A scientist wishes to produce seedless watermelons for commercial cultivation by										
110.	tissue culture. What might be his technique of choice?										
	A)	anther cultu			1						
	B)	anther cultur	e follov	ved by cl	hromos	ome do	oubling				
	C)	endosperm c									
	D)	endosperm c	ulture f	ollowed	by chro	omoson	ne doubling				
111.	A sci	entist wishes to	rescue	a rare m	nutant o	rnamer	ntal plant fron	n viral att	tack. His		
	technique of choice will be:										
	A)	· · ·									
	B)										
	C)	Meristem tip									
	D)	Nodal explai	ni cuitui	re							
112.	Zolgensma a drug used for treating spinal muscular atrophy is made using:										
	A)	Adeno ivirus	8		B)	Vaccinia virus					
	C)	Lentivirus			D)	Aden	o associated v	virus			
113.	The a	addition of mica	roorgan	ism whic	ch favoi	urs heal	Ith benefits:				
	A)	Probiotics	B)	Antibi		C)	Prebiotics	D)	Adjuvants		
114.	Miso	is a fermented	produc	t of							
11.,	A)	Rice	B)	Whea	t	C)	Barley	D)	Soybean		
115.	First	amino acid cor	nmercia	ılly prod	uced by	/ ferme	ntation [.]				
110.	A)	Glutamic aci		nij prou	B)	L-Lys					
	C)	Phenyl alani			D)		rtic acid				
116.	Role	of microorgani	isms in	fermenta	ition wa	as disco	vered by:				
110.	A)	_					rt Koch				
	Ć)	Joseph Liste	r		B) D)	Alexa	ander Fleming	5			

117.	Clostr	ıdıum perfringe	ens pois	oning is	associa	ited wit	h:		
	A)	Vegetables			B)	Meat p	roduct		
	C)	Canned food			D)	Fish pr	roducts		
118.		is rolled three to				that the	first roll is an	ace, the	second roll
	A)	1/6	B)	1/12		C)	1/216	D)	1/18
119.	A decl	κ of cards is shung?	ıffled aı	nd three	cards a	re dealt	t. Find the char	nce that t	the first card
	A)	1/13	B)	1/52		C)	1/26	D)	4/ 51
120.	Statem Statem			olasmid replicate			gin of replicati lines	on	
	A)	Both statemen	its are ti	rue and	1 is the	correct	explanation of	f 2	
	B)	Both statemen	its are ti	rue but 1	l is not	the corr	rect explanation	n of 2	
	C)	Both statemen	its are w	vrong					
	D) 1 is wrong but 2 is correct								